
Are Virtual-Machine Monitors Microkernels Done Right?

Gernot Heiser
National ICT Australia∗ and University of New South Wales

Sydney, Australia
gernot@nicta.com.au

Volkmar Uhlig
IBM T.J. Watson Research Center, Yorktown Heights, NY

vuhlig@us.ibm.com

Joshua LeVasseur
University of Karlsruhe, Germany

jtl@ira.uka.de

Abstract

A paper by Hand et al. at the recent HotOS work-
shop re-examined microkernels and contrasted them
to virtual-machine monitors (VMMs). It found that
the two kinds of systems share architectural com-
monalities but also have a number of technical dif-
ferences which the paper examined. It concluded that
VMMs are a special case of microkernels, “microker-
nels done right”.

A closer examination of that paper shows that it
contains a number of statements which are poorly
justified or even refuted by the literature. While we
believe that it is indeed timely to reexamine the mer-
its and issues of microkernels, such an examination
needs to be based on facts.

1 Introduction

At the HotOS workshop in June this year, Hand and
coauthors presented a paper [HWF+05] titled “Are
virtual machine monitors microkernels done right?”

∗National ICT Australia is funded by the Australian Govern-
ment’s Department of Communications, Information Technol-
ogy, and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Research Centre of Ex-
cellence programs.

The paper compares and contrasts microkernels and
virtual-machine monitors (VMMs) as platforms for
systems design and implementation. While identify-
ing architectural similarities, it examines the differ-
ence in the approaches, and concludes that VMMs
are one specific point in the microkernel design
space, the “right” one. Unstated but implied is the
assertion that VMMs such as Xen [BDF+03] are the
(to date) only “right” approach to building microker-
nels.

Taking a closer look at the main assertions made
by Hand et al, we find that they are hard to justify,
or even squarely at odds with the literature. While
we think that reexamining the merits and failures of
microkernels is a potentially valuable exercise, we
strongly believe that such a discussion must be per-
formed in accordance with established scientific prin-
ciples, and most of all, be grounded in facts. As a
contribution to an informed discussion, we examine
the assertions made by Hand et al in the light of the
public record.

2 Background

Before addressing the specific assertions made in
Hand et al’s paper, we provide some (we hope) useful
background for the discussion.

95

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1113361.1113363&domain=pdf&date_stamp=2006-01-01


2.1 History Revisited

Microkernels and virtual machine monitors both have
a long history, dating back to the early 1970’s [BH70,
Gol74]. Given that there are significant similarities,
it is useful to look at a somewhat narrow definition of
both.

Goldberg [Gol74] defines a virtual machine mon-
itor as “[...] software which transforms the single
machine interface into the illusion of many. Each
of these interfaces (virtual machines) is an efficient
replica of the original computer system, complete
with all of the processor instructions [...]”.

Liedtke [Lie96] describes the microkernel ap-
proach as “... to minimize the kernel and to imple-
ment whatever possible outside of the kernel”.

Both definitions appear sufficiently distinct to raise
the question of how much commonality there can be.
Examining the goals of the two approaches shows
that there is more similarity than is evident from the
definitions: Goldberg lists software reliability, data
security, alternative system APIs, and improved and
new mechanisms as benefits; Liedtke lists flexibility
and extensibility, fault isolation, maintainability, and
restricted interdependencies.

It seems that while VMMs and microkernels share
a common set of goals, they take a different approach
towards the solution. Yet both approaches consider
minimality important. While for microkernels it is a
key objective, Goldberg reports it as a result of the
system structure: “A key principle in the analysis of
software reliability is that the VMM is likely to be
correct—i.e., the probability of failure is near zero.
This assumption is reasonable because the VMM is
likely to be a very small program [...]”.

2.2 Core primitives

In the effort to minimise kernel functionality, micro-
kernels offer a minimal set of abstractions with a cen-
tral primitive for extensibility: inter-process commu-
nication (IPC). In a microkernel, IPC serves three pri-
mary purposes:

1. IPC is the mechanism for kernel-controlled
change of execution flow between protection

domains;

2. IPC is the mechanism for kernel-controlled data
transfer between protection domains;

3. IPC is the mechanism for resource delegation
between protection domains that requires mu-
tual agreement between multiple (potentially
distrusting) parties.

Combining these three orthogonal operations into
a single primitive reduces the number of security
mechanisms, reduces the code complexity, and re-
duces the code size. A smaller code base reduces
the number of errors in the privileged kernel, as well
as reducing the cache footprint. An obvious key re-
quirement for any microkernel is thus a low-overhead
IPC primitive. All other operations that require a
combination of the three mechanisms can be imple-
mented via the single IPC primitive.

VMMs in comparison, closely resemble processor
hardware and offer a rich variety of primitives. Each
primitive requires a dedicated set of security mecha-
nisms, resources, and kernel code. A comprehensive
list is beyond the scope of this paper, thus we only list
the common subset of primitives that can be found in
most VMMs:

1. synchronous switch of protection domain from
guest user to guest kernel;

2. synchronous switch of protection domain from
guest kernel to guest user;

3. asynchronous communication channels across
domains (virtual machine (VM) to virtual ma-
chine);

4. resource allocation per VM via VMM hyper-
call interface;

5. resource allocation within the VM (e.g., via
hardware page-table virtualisation);

6. resource re-allocation (e.g., via page flipping);

7. page-fault and exception handling via exception
virtualisation;

96



8. asynchronous event notification across domains
via virtual-interrupt signalling mechanism;

9. hardware interrupt notification via virtualized
interrupt controller;

10. a set of common devices, such as NIC and disk.

The interfaces provided by the VMM have an in-
triguing benefit for an important class of highly com-
plex software: existing operating systems. Avail-
able operating systems already program to the inter-
face provided by the hardware and resembled by the
VMM. Thus existing operating systems require no or
only minimal changes to run on a VMM, whereas
adaptation to the microkernel primitives often re-
quires significant modifications. However, this ben-
efit is being eroded by the increasing divergence of
VMMs from pure virtualisation (faithful representa-
tion of the underlying hardware) to paravirtualisation
(representation of modified hardware that lends itself
better to efficient support of legacy OSen).

The diversity of interfaces also leads to struc-
tural compromises, such as centralized super-VMs
that combine and colocate significant critical system
functionality. Such a structure potentially decreases
overall reliability and poses the risk of a single point
of failure. This problem becomes even more inher-
ent if this super-VM runs a legacy operating system
and thus re-introduces a large number of software
bugs [CYC+01].

For extensions that are not an existing operating
system, the VMM’s interfaces significantly increase
the complexity of software design. As, per defini-
tion, a VMM presents an interface that is close to the
underlying architecture, software developed for one
VMM is inherently unportable across architectures.
In contrast, a microkernel abstracts and hides the pe-
culiarities of the hardware platform behind its com-
mon set of abstractions. For example, software that
is written for an L4 microkernel [Lie95] naturally
runs on nine different processor platforms, from em-
bedded devices such as ARM, to desktop and small
servers such as x86, up to large multiprocessor Pow-
erPC and Itanium machines. Hence, it is possible to
leverage and reuse system components across a wide

variety of hardware platforms, thereby minimising
porting and maintenance overhead.

3 Architectural Lessons

Now we reexamine the architectural lessons pre-
sented by Hand et al in detail, following the headings
of their paper, and clarify the role of microkernels.

3.1 Avoid Liability Inversion

The paper states that moving system services out
of the kernel relaxes the dependability boundaries
within the system. Applications and even the ker-
nel depend on user-level code. This situation is
called liability inversion and an example from Mach
[YTR+87] is used to argue that “inelegant” mecha-
nisms are required to ensure correct system opera-
tion as a consequence of the “kernel abdicating its
liability”. It is further argued that one of the princi-
pal design guidelines of Xen were to avoid liability
inversion.

At the workshop, Butler Lampson was quick to
point out that this liability inversion is in fact an is-
sue in Xen as well. An example for this is actu-
ally given in another paper at the same workshop
by some of the same authors: the Parallax storage
system [WRF+05] essentially uses external pagers
to provide file service. While that paper argues that
the design avoids liability inversion, Parallax is “pro-
viding a critical system service for a set of VMMs”.
This is exactly what a user-level server does in a
microkernel-based system. The argument is made
that a failure of the Parallax server only affects its
clients — exactly the same situation as if a server
fails in an L4-based system. Hence, we fail to see the
difference between a VMM and a microkernel in this
respect.

Possibly this apparent conflict is a result of a
lack of understanding of microkernels (even though
this has been thoroughly explained in the litera-
ture [Lie96]). The confusion might in fact be the re-
sult of an invalid generalisation of a specific example
(a particular design fault of Mach) onto a whole class
of systems (microkernels).

97



3.2 Make IPC performance irrelevant

Here Hand et al. argue that, while microkernel de-
signers have spent considerable effort on optimising
inter-process communication (IPC) mechanisms, this
is irrelevant as it is “not a critical design concern in
the construction of high-performance VMMs.”

They further argue that IPC between virtual ma-
chines is much less frequent and thus not per-
formance critical, as a consequence of the VMM
scheduling and protecting complete operating sys-
tems.

This is an interesting line of argument, as it is at
odds with the reality of Xen-based systems in at least
two respects:

• Xen uses a separate virtual machine (called
Dom0) to encapsulate legacy device drivers
[FHN+04]. Hence, any I/O operation implies
at least one round-trip communication between
the guest VM and Dom0. The authors call this
a “simple asynchronous unidirectional event
mechanism” — it is nothing else than a form
of asynchronous IPC.

And performance-critical it is indeed. A recent
paper [CG05] examines the CPU overhead of
Dom0 drivers under high load, and finds that the
CPU load generated by Dom0 accounts for al-
most all of the CPU load of the system under
test! They also find that the Dom0 CPU time
is proportional to the number of Xen’s page-
flipping operations, that is, message transfers,
irrespective of the message size. The clear im-
plication of this data is that IPC costs dominate
the driver overhead in Xen systems under high
I/O load.

• While it is true that Xen schedules complete op-
erating systems, this does not mean that there
is no other interaction with the VMM. In fact,
each guest-application exception and system
call causes a trap into the VMM, which then in-
vokes corresponding functionality in the guest
OS. This is nothing but an IPC operation be-
tween the guest application and the guest OS.

Xen provides a shortcut based on x86’s trap
gates that avoids invoking the VMM on guest
systemcalls. However, this shortcut is specifi-
cally targeted and limited to Linux’s int 0x80

system-call variant and restricts the use of seg-
ments. Protection can only be preserved if all
active segment configurations explicitly exclude
the VMM kernel. Since x86’s trap mechanism
only reloads two of the six segment selectors,
the solution is limited; Linux’s latest glibc vi-
olates the assumption and renders the shortcut
useless.

A Xen-based system performs essentially the
same number of IPC operations as a compara-
ble microkernel-based system (such as L4Linux
[HHL+97]).

3.3 Treat the OS as a component

Under this heading, Hand et al. argue that a benefit
of VMMs is that they are designed to run complete
legacy systems, with familiar programming and de-
velopment environments, and lending themselves to
extensions such as Parallax. The (unstated) implica-
tion of such statements has to be that microkernels
are somehow not suitable for such use.

This is a really surprising notion, as L4 has demon-
strated many years ago that it is perfectly suitable as
a VMM supporting a paravirtualised Linux system
with excellent performance [HHL+97], and the Dres-
den DROPS system [HBB+98] is built specifically
on extending a paravirtualised Linux system running
on a microkernel with real-time services and is in in-
dustrial use.

Again, we fail to see the claimed “significant dif-
ference” between VMMs and microkernels.

4 Conclusions

In summary, the “important differences” between mi-
crokernels and VMMs identified by Hand et al. do
not seem to hold up to scrutiny. As a consequence,
their conclusion “that VMMs are microkernels done
right” cannot be inferred from the arguments they

98



presented. Yet, the observation, also made by others
[HPHS04], that VMMs and microkernels are closely
related, deserves further attention. We believe that a
systematic and objective examination of the similar-
ities and differences of microkernels and VMMs is
still outstanding, and would make a valuable contri-
bution to OS theory and practice.

References

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfi eld.
Xen and the art of virtualization. In Proceed-
ings of the 19th ACM Symposium on OS Prin-
ciples, pages 164–177, Bolton Landing, NY,
USA, October 2003.

[BH70] Per Brinch Hansen. The nucleus of a mul-
tiprogramming operating system. Communi-
cations of the ACM, 13:238–250, 1970.

[CG05] Ludmila Cherkasova and Rob Gardner. Mea-
suring CPU overhead ofr I/O processing in
the Xen virtual machine monitor. In Proceed-
ings of the 2005 USENIX Technical Confer-
ence, pages 387–390, Annaheim, CA, USA,
April 2005.

[CYC+01] Andy Chou, Jun-Feng Yang, Benjamin
Chelf, Seth Hallem, and Dawson Engler. An
empirical study of operating systems errors.
In Proceedings of the 18th ACM Symposium
on OS Principles, pages 73–88, Lake Louise,
Alta, Canada, October 2001.

[FHN+04] Keir Fraser, Steven Hand, Rolf Neuge-
bauer, Ian Pratt, Andrew Warfi eld, and Mark
Williamson. Reconstructing I/O. Techni-
cal Report UCAM-CL-TR-596, University of
Cambridge, August 2004.

[Gol74] Robert P. Goldberg. Survey of virtual ma-
chine research. IEEE Computer, 7(6):34–45,
June 1974.

[HBB+98] Hermann Härtig, Robert Baumgartl, Martin
Borriss, Claude-Joachim Hamann, Michael
Hohmuth, Frank Mehnert, Lars Reuther, Se-
bastian Schnberg, and Jean Wolter. Drops
— OS support for distributed multimedia
applications. In Proceedings of the 8th

SIGOPS European Workshop, Sintra, Portu-
gal, September 1998.

[HHL+97] Hermann Härtig, Michael Hohmuth, Jochen
Liedtke, Sebastian Schönberg, and Jean
Wolter. The performance of µ-kernel-based
systems. In Proceedings of the 16th ACM
Symposium on OS Principles, pages 66–77,
St. Malo, France, October 1997.

[HPHS04] Michael Hohmuth, Michael Peter, Hermann
Härtig, and Jonathan S. Shapiro. Reduc-
ing TCB size by using untrusted compo-
nents —small kernels versus virtual-machine
monitors. In Proceedings of the 11th
SIGOPS European Workshop, Leuven, Bel-
gium, September 2004.

[HWF+05] Steven Hand, Andrew Warfi eld, Keir Fraser,
Evangelos Kottsovinos, and Dan Magen-
heimer. Are virtual machine monitors mi-
crokernels done right? In Proceedings of
the 10th Workshop on Hot Topics in Operat-
ing Systems, Sante Fe, NM, USA, June 2005.
USENIX.

[Lie95] Jochen Liedtke. Improved address-space
switching on Pentium processors by transpar-
ently multiplexing user address spaces. Tech-
nical Report 933, GMD SET-RS, Schloß Bir-
linghoven, 53754 Sankt Augustin, Germany,
November 1995.

[Lie96] Jochen Liedtke. Towards real microkernels.
Communications of the ACM, 39(9):70–77,
September 1996.

[WRF+05] Andrew Warfi eld, Russ Ross, Keir Fraser,
Christian Limpach, and Steven Hand. Par-
allax: Managing storage for a million ma-
chines. In Proceedings of the 10th Workshop
on Hot Topics in Operating Systems, Santa
Fe, NM, USA, June 2005. USENIX.

[YTR+87] Michael Young, Avadis Tevanian, Richard
Rashid, David Golub, Jeffrey Eppinger,
Jonathan Chew, William Bolosky, David
Black, and Robert Baron. The duality of
memory and communication in the imple-
mentation of a multiprocessor operating sys-
tem. In Proceedings of the 11th ACM Sympo-
sium on OS Principles, pages 63–76, 1987.

99




